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In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Schr6dinger 
equations, we show that the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to 
homoclinic chaos in the laser-matter dynamics. 

1. Introduction 

Haken [1] observed that the Maxwell-Bloch 
equations for the dynamics of a single cavity 
mode laser with two energy levels [2] could be 
transformed into the Lorenz equations, whose 
strange attractor and complex dynamics by now 
are famous in dynamical systems studies. Usually, 
lasers operate  in the good cavity limit, in the 
regime of low dissipation. (For overviews of lasers 
and their dynamics, see refs. [3-6, 40].) In the low 
dissipation regime, laser output is very stable and 
corresponds to a limit-cycle solution of the Lorenz 
equations. The strange attractor behavior for the 
solutions of the laser equations appears  only in 
the bad cavity limit [7] of high dissipation, but this 
limit is not of much practical value in laser opera- 
tion. 

Although the Haken  transformation to the 
Lorenz equations seems not to be of much practi- 
cal value, it does reveal the rich dynamical behav- 
ior that is latent in the laser equations. As we 

1Present address: Mathematical Sciences Department, 
Rensselaer Polytechnic Institute, Troy, NY 12180, USA. 

shall discuss, in the good cavity limit over time 
intervals much shorter than the characteristic re- 
laxation times of the system, this rich dynamical 
behavior makes its appearance in the presence of 
perturbations, and when additional physics is in- 
troduced into the laser equations, such as addi- 
tional cavity modes, more than two energy levels, 
or external forcing. 

In the good cavity limit, several numerical stud- 
ies [8-11], have addressed the issue of chaotic 
Hamiltonian dynamics in the interaction of atoms 
and molecules with self-consistently generated 
electromagnetic fields. These works have consid- 
ered a generalization of the Jaynes-Cummings  
model [12, 13]; namely, an ensemble of two-level 
atoms interacting with a single-mode electromag- 
netic field. This model is known to be exactly 
solvable when retaining only the resonant interac- 
tion, that is, making the rotating wave approxima- 
tion. These numerical studies find evidence for 
stochastic behavior of  solutions of the generalized 
Jaynes-Cummings  model. This stochastic behav- 
ior occurs in the numerical simulations above a 
threshold value of the coupling constant between 
the atoms and the field, and is apparently associ- 
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Fig. 1. Experimental arrangement for a probe laser interact- 
ing with a two-level material sample. The three mirrors form 
the single-mode ring-laser cavity. The probe beam is nearly 
collinear with the unidirectional self-consistent beam. 

ated to the breakdown of the rotating wave ap- 
proximation and the effects of nonresonant terms 
[8-10]. 

In contrast, the numerical study of Alekseev 
and Berman [11] investigates the Hamiltonian 
Maxwell-Bloch dynamics of a laser modeled as 
an ensemble of atoms in resonance with the self- 
consistent field of a single-mode cavity within the 

rotating wave approximation, and in interaction 
with a probe laser (an external monochromatic 
field of constant amplitude). The experimental 
arrangement for this investigation is sketched in 
fig. 1. The probe laser is assumed to have finite 
frequency detuning, but small amplitude. The 
numerical calculations of Alekseev and Berman 
[11] exhibit stochasticity caused by the probe laser 
perturbation, without any threshold condition in 
the coupling constant between the atoms and the 
field. These authors also give a heuristic and 
approximate analytical discussion of the stochas- 
ticity in terms of a pendulum model of the laser 
dynamics. 

All these models impose some approximations 
upon a fundamental description that begins with 
Maxwell's equations for the electric field and 
Schr6dinger's equation for the probability ampli- 
tudes of the atomic levels. The polarizability in 
Maxwell's equations is treated as an ensemble 
average of a quadratic function of the atomic 

amplitudes, neglecting quantum correlations. The 
rotating wave approximation is then imposed for 
the slowly varying complex envelopes of the solu- 
tions by averaging over their rapidly varying 
phases. The resulting Maxwell-Schrtidinger enve- 
lope equations reduce to the Maxwell-Bloch 
equations in the rotating wave approxima- 
tion, upon transforming to the phase-invariant 
variables known as Stokes parameters in 
classical optics (see ref. [14]). An early use of 
these phase invariant variables for deriving the 
Maxwell-Bloch equations appears in ref. [15]. 
Introduction of a probe-laser electric field as a 
perturbation in the Maxwell-Bloch dynamics re- 
sults in the equations studied in ref. [11]. The 
model we study here is the Maxwell-Schr6dinger 
envelope representation of this problem, which 
retains a certain phase information not present in 
the Maxwell-Bloch description. 

The analysis presented in this paper is an exact 
analytical solution of the problem treated numer- 
ically in ref. [11]. The main result is an analytic 
demonstration of the mechanism causing chaos in 
this problem. Our analysis relies on the presence 
of symmetries leading to extra conservation laws 
in both the unperturbed Maxwell-Schr/Sdinger 
envelope dynamics and the Maxwell-Schr/Sdinger 
envelope dynamics perturbed by the probe laser. 
These symmetries and their associated conserva- 
tion laws reduce the phase-space dimension by 
requiring the Maxwell-Schr/Sdinger envelope dy- 
namics to take place on intersections of the level 
surfaces of the conservation laws. These level 
surfaces provide a global geometrical framework 
for applying the Melnikov technique. The 
Melnikov technique establishes the presence of 
transverse intersections of stable and unstable 
manifolds of the hyperbolic periodic orbits in the 
perturbed Maxwell-Sch~6dinger envelope dy- 
namics. Even under the perturbation, an extra 
conservation law remains. This extra conservation 
law constrains the solutions and determines the 
geometry of the transverse intersections, which 
arise in the presence of the perturbation. These 
transverse intersections imply chaotic motion of 
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phase points in their vicinity. The mechanism for 
the chaotic dynamics is established using a Smale 
horseshoe map. Specifically, we iterate initial 
condition sets lying on a cross-section transverse 
to the flow in the neighborhood of the intersec- 
tion orbits. This iteration leads to chaotic dynam- 
ics on an invariant Cantor set by an extension of 
a construction due to Devaney [16]. In our con- 
struction of the Smale horseshoe map, the global 
phase-space geometry of the transverse intersec- 
tions plays an explicit role. Namely, the trans- 
verse intersections can be thought of locally as a 
pair of spiral-saddle-focus connections (as dis- 
cussed by Devaney [16]), crossed into a circle. 
However, to be realized globally, this local repre- 
sentation of the transverse intersections requires 
two charts. It is in these two charts that we 
construct the Smale horseshoe map for the per- 
turbed Maxwell-Schr6dinger envelope dynamics. 
The chaotic behavior we establish in this way may 
be seen experimentally as intermittent "flicker- 
ing" of the light intensity emitted by the 
laser-matter system. 

The rest of the paper is organized as follows. 
In section 2 the slowly varying envelope approxi- 
mation and the rotating wave approximation for 
the self-consistently generated fields and the 
atomic level amplitudes are used to derive the 
Maxwell-Schr6dinger envelope equations for 
laser dynamics as a six-dimensional set of canoni- 
cal Hamiltonian equations on C 3. The integrable 
phase space structure of this system is discussed 
in section 3, and explicit expressions are found 
for its homoclinic solutions. In particular, these 
homoclinic solutions are characterized globally in 
phase space as the stable and unstable manifolds 
of hyperbolic periodic orbits. In section 4 the 
hyperbolic periodic orbits are shown to persist 
under the small-amplitude probe-laser perturba- 
tion. In section 5 this perturbation is found by 
using the Melnikov vector method to cause the 
stable and unstable manifolds of these periodic 
orbits to intersect in C 3. Transversality of these 
intersections is proven in section 6. Section 7 
digresses to treat the case of a finite-amplitude 

probe laser with small detuning. Section 8 makes 
the Smale horseshoe construction for recurrent 
orbits. The Smale horseshoe is the mechanism for 
the chaotic dynamics present in this system. Con- 
clusions and discussions of the measurability of 
this effect are given in section 9. The three 
appendices treat special cases and give back- 
ground information that would otherwise inter- 
rupt the flow of the main text. Appendix A de- 
scribes chaotic dynamics for a restricted, three- 
dimensional Maxwell-Bloch model. Appendix B 
discusses background on Poisson brackets and 
symplectic forms needed in the text. Finally, 
appendix C describes action principles for the 
Maxwell-Schr/Sdinger equations and their per- 
turbed envelope approximation. 

2. MaxweU-Schr6dinger envelope equations 

In this section we derive the perturbed 
Maxwell-Schr6dinger envelope model, whose in- 
vestigation is the main topic of this paper. In 
particular, we derive this model by imposing the 
slowly varying envelope approximation and the 
rotating wave approximation directly on the prim- 
itive Maxwell-Schr6dinger partial differential 
equations that describe the dynamics of the in- 
teraction between laser light and a material 
sample composed of two-level atoms. We pre- 
sent an alternative derivation of the perturbed 
Maxwell-Schr6dinger envelope equations in ap- 
pendix C. This second derivation is based on 
an action principle and accounts for the Ham- 
iltonian nature of the perturbed Maxwell- 
Schr6dinger envelope equations. 

We consider the effects of a monochromatic 
probe laser interacting nearly resonantly with an 
excited ideal dielectric medium. The medium is 
modeled as a two-level atomic system dynamically 
changing under the influence of its own self-con- 
sistent electric field. Suppose the sample of ex- 
cited dielectric material is of cylindrical shape, 
with length l and cross-sectional area A, and the 
resonant light in the medium has the wavelength 
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,~ = c / tO o. One may assume that the electric field 
depends spatially only on the distance, z, along 
the optical axis (see fig. 1), provided the quantity 
A / ; t l  is of order unity. 

Assuming the electric field with magnitude E is 
linearly polarized, Maxwell's equations in the 
ideal dielectric material with A / A I  = ~(1) reduce 
to the scalar wave equation 

Ez z _ _~ Et  t = 4~r - ~ P t , .  

In this equation, P denotes the polarizability of 
the material due to resonant or nearly resonant 
dipoles, and c is the speed of light in the host 
medium into which the (nearly) resonant dipoles 
are embedded. These dipoles are assumed to be 
so sparsely distributed in the host medium that 
they interact only with the imposed electric field 
and not with each other. This requires the dipole 
density n to satisfy the inequality n d  << E o, where 
E 0 is the typical magnitude of the electric field, 
and d is the atomic dipole moment. 

We also assume that the distribution of reso- 
nant dipoles may be regarded as spatially contin- 
uous in z. This requires the dipole density to 
satisfy the inequality n A A  >> 1. The requirements 
of the continuum approximation on one side, and 
the neglect of dipole-dipole interactions on the 
other, bracket the dipole density between the 
inequalities 

E 0 1 
-d- >> n >> A---~-" 

Schr6dinger's equation 

where I + ) represents the excited state, and I - ) 
represents the ground state of the atoms. In the 
expression for the wave function ~b, the quantities 
a + ( t ,  z )  and a _ ( t ,  z )  are the probability ampli- 
tudes for n A  A z dipoles in a slice of the sample 
of width A z at position z to be in the states [ + ) 
and [ - ), respectively. 

The Hamiltonian describing the two-level sys- 
tem with dipole-field interactions takes the matrix 
form 

i? t= ihtO o - d E  

- d E  - ½ h t O  o " 

With this Hamiltoniarl, Schr/Sdinger's equation 
implies the following equations for the complex 
amplitudes a + ( t,  z )  and a _ ( t ,  z): 

too d E  tOo d E  
i d+=  --~-a+- --h-a_, i d _ =  --~--a - --h-a+, 

with time derivatives denoted as overdots. 
We now introduce the cooperat ive  f r equency  

[ 2,rrnd2too 

as the basic frequency scale, and nondimensional- 
ize by the following replacements: 

toez d E  
t ~ to c t , z ~ -~ , E ~ h to-----~ . 

By definition, the macroscopic polarizability P is 
the expected value of the microscopic dipole mo- 
ment times the dipole density. Hence, 

i h~ t  = I~I~ P = n d ( a + a * +  a ' a _ ) .  

governs the dynamics of an ensemble of two-level 
atoms interacting with the electric field E. In 
Schr6dinger's equation the wave function ~ is 
expressible as 

O = a + ( t , z ) l  + ) + a _ ( t , z ) l  - ) ,  

We thus obtain the dimensionless  M a x w e l l -  

Schr6dinger  equat ions  

Ezz  - Eft  = 2K(  a +a* + a *  a _  ) t t ,  

1 1 
iti+=-~--~Ka+--Ea , i~i_=--~--~Ka - E a  +, 
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where K = toe/to0. From here on, we will assume 
that the ratio K is small, K << 1 #1. 

In order to set up the rotating wave approxima- 
tion, we assume a solution in the form of a 
modulated right-going wave, 

E = $" e - i ( t - z ) / K  + .co¢~ "* e i ( t -z ) /K 

--t- ~: e - i ( t - z ) / ~ '  d- E e i( t-z) /K' ,  

a +  = b+ e - i ( t - z ) / 2K ,  a _  = b _  e i ( t -z) /2K. 

The first two terms in the modulated traveling- 
wave expression for E represent the self-con- 
sistently genera ted  electric field, and the second 
two terms denote the probe-laser field. The 
rapidly varying phase factors in each term of E 
represent the color of the laser light, while the 
amplitude factors represent its slowly varying 
brightness. The dimensionless frequency detuning 
between the self-consistent field of the resonant 
medium and the probe laser is given by 1 / K -  
1/K' = tO = ee(1). Following Alekseev and Berman 
[11], we assume that the complex envelope func- 
tions $', b÷ and b_ depend only on time. The 
equations for the slowly varying probability am- 
plitudes b ÷ ( t ) and b _ ( t ) become 

ib + = - ( 8" + E e i°J(t-z)) b_ 

- ($'* + e e-i '°(t-z)) b -  eZi~t-z)/K, 

i / )_= - (g '* + • e-i'°(t-Z))b+ 

-- ( ~ + • e i~°( t -Z))b + c - 2 i ( t - z ) / ~ .  

The rotating wave approximation is imposed by 
averaging these equations over the fast phase 
( t - - Z ) / K .  After averaging the amplitude equa- 
tions, we find 

ib+= - ( ~ ' +  E ei'°~'-Z))b_, 

i b _ =  - (8"* + e e-i~°(t-Z))b+. 

#1This is a typical assumption in the dynamics of short laser 
pulses in fibers. In fact, taking d = 1 Debye (=  I0-18 esu), 
and w -__~LZ~ 5 Hz for visible light gives toc(Hz)= 2 × 
103~/n(cm-3). So K << 1, so long as the dipole number 

density n satisfies ~ << 1012. 

In the scalar wave equation for the electric field 
E, we assume that g~, b+ and b_ vary slowly in 
time and that therefore the inequalities ~" << ~ /K ,  
etc., hold. This assumption drops the order of the 
wave equation to first order. The equation we 
thus obtain is 

i ~  e -i~t-z)/K _ i ~  e i(t-z)/K 

= - ( b + b *  C - i ( t - z ) / K  2(- b ' b _  e i ( t - z ) / K ) .  

Collecting terms with the same phase factor as ~ ,  
yields 

i # =  - b + b ~ .  

The assumption that ~ and b:~ are indepen- 
dent of z becomes consistent after averaging the 
equations just obtained in z. This spatial averag- 
ing introduces only negligible errors, provided the 
sample is sufficiently short; in particular, pro- 
vided the sample lies between the (nondimen- 
sional values) - z  0 and z 0, where 

to cl 
Z0 = -~ -  << 1. 

We thus obtain the perturbed Maxwell-SchrO- 
dinger envelope equations 

= ib+b*_, (2.1a) 

b+= i ( g +  eei° ' t )b_ ,  (2.1b) 

b_ = i ( g *  + e e- i ' ° t )b+.  (2.1c) 

The analysis of these per turbed Maxwell-  
Schr6dinger envelope equations is the subject of 
the remainder of the paper #2. 

The perturbed Maxwell-Schr6dinger envelope 
equations (2.1) form a Hamiltonian system with 

#2Note: Transforming these equations to Stokes parameters 
Rx, Ry, and Rz, given by Rz=  Ib+] 2 -  ]b_l 2, R x + i R y =  
2ib+b*_, recovers the perturbed Maxwell-Bloch model stud- 
ied numerically by Alekseev and Berrnan [11]. See also ap- 
pendix A and appendix B. 
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t ime-dependent Hamiltonian function given by 
the electromagnetic interaction energy, 

Z" = - ½(~ + • e i ' / ) b * b _  

- ½(~* + • e-i'°t)b+b*_, 

and complex symplectic form - ( 1 / 2 i ) ( d $ ' / x  
d$'* + db+A d b * +  db_A db*__). (See appendix B 
for a discussion of symplectic forms, Poisson 
brackets, and their connection to Hamiltonian 
systems.) 

Invariance of the Hamiltonian Z" under the 
transformation 

( ~ , b + , b _ ) ~ ( ~ ' , b + e i ' , b _ e i v ) ,  

for any angle 3/, implies the conservation of the 
l 1 12. sum L = ~ Ib+ 12 + ~ Ib_ This conservation re- 

flects preservation in the rotating wave approxi- 
mation of unitarity of the averaged probability 
amplitudes in (2.1). 

The perturbed Maxwell-Schr6dinger envelope 
equations (2.1) simplify upon using the time- 
dependent  canonical transformation 

~ = ( x - E ) e  i~°t, b + = u e  2i,°t, b _ = v e  i,°t. 

This canonical transformation brings eqs. (2.1) 
into the autonomous form 

~? = - i t o ( x  - • )  + i uv* ,  (2.2a) 

= -2 i t ou  + i x v ,  (2.2b) 

b = - i t o v  + i x * u .  (2.2c) 

The system (2.2) is Hamiltonian with the t ime- 

independent Hamiltonian function 

~ Ivl 2 H =  ½tolx-  El 2 +tolul  2 + ~to 

- ½xu*v - ½x*uv*,  (2.3) 

and complex symplectic form - ( 1 / 2 i ) ( d x / x  
dx*  + du A du* + dv/x  dv*). It follows that the 
function H is a constant of motion for both (2.2) 

and also the equivalent equations (2.1) in the 
(~ ,  b+, b_)  coordinates. In these original coordi- 

3 nates, H can be written as H = _~ + ~toL with 

b 2 ~ = ½ t o l ~ l E + x t o ( [  +1 _ [b _ 1 2 )  

-ioJtX b* t. 

_ - - i , , , t x  b t . * ]  + ( ~ * + e c  ) +v_ I.  

The first term in this expression represents the 
energy of the self-cormistent electric field; the 
second term is the excitation energy of th e atoms; 
and the third term is Z ~, the electromagnetic 
interaction energy between the total electric field 
and the ensemble of atomic dipole moments. 
Thus the conserved quantity -~ is the total energy 
for the perturbed Maxwell-Schr6dinger envelope 
equations. 

There are two integrable limits of the Hamilto- 
nian system (2.1), namely, e = 0 and to = 0. The 
first limit corresponds to zero amplitude of the 
laser probe, and the second to zero detuning but 
finite probe amplitude, in what follows, we inves- 
tigate the two near-integrable cases, • << 1 and 
to << 1, always assuming that K << • and r << to. 
We first treat the case of small • in detail. Later, 
in section 7, we briefly discuss the case of small 
to, whose analysis follows along the same lines. 

3. U n p e r t u r b e d  h o m o c l i a i c  s t r u c t u r e  

In this section we determine the homoclinic 
orbit structure of the unperturbed system (2.2) 
with • = 0, namely, 

,~ -- - itox + iuv*, (3.1a) 

ti = - 2 i t o u  + i x v ,  (3.1b) 

b = - itov + i x * u .  (3.1c) 

This unperturbed Maxwell-Schr/kdinger envelope 
system possesses three constants of motion 

,~  = ½tolxl~ + tolul~ + "tolvl  ~ -  ½xu*v - ~x*uv*, 
1 2 L = ~lul + ½1vl 2, . / =  ½1xl 2 + ½1ul 2. 
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The first three terms of the Hamiltonian H gen- 
erate the phase rotation 

( x , u , v )  ,--', ( x e i O ' t , u e 2 i ' t , v e  i ' t )  

discussed earlier. Of  course, in the limit when the 
detuning, to, vanishes, these terms are absent. 

We next use the two constants of motion L 
and J to reduce the order of the unperturbed 
system (3.1). In particular, we reduce the unper- 
turbed problem to phase-plane analysis, in which 
all the homoclinic orbits are readily identified 
and solutions on these orbits are calculated. The 
full homoclinic solutions in our original phase 
space are then reconstructed by quadratures from 
those in the reduced phase plane. We discuss 
their geometry in detail, because of its impor- 
tance as a framework for the treatment of the 
perturbed problem. 

The reduction of order in the unperturbed 
problem (3.1) is achieved by introducing the fol- 
lowing canonical transformation, which is defined 
for IXl < min(2L,2J) :  

x = " t / 2 J -  Ixl 2 e i*, (3.2a) 

u -- x ei(°+°), (3.2b) 

v = ~/2L - IX[ 2 e ia. (3.2c) 

The Hamiltonian H in these new variables be- 
c o m e s  

H = toL + toJ 

-½V t 2 L -  IXI2~ /2J -  IXI 2 ( X + X * ) ,  

(3.3) 

t Z2 

( 
Fig. 2. Phase portrait for 
dinger envelope system in 

the unperturbed Maxwell-Schr6- 
the reduced phase plane, (Xj,X2). 

The vertical line segment along the g2-axis is a homoclinic 
orbit when the two constants of motion J and L are equal. 

gles are also not present in any right-hand sides 
of the equations of motion. In particular, ~b and 0 
do not appear in the equation for X. Hence, we 
can calculate ~O and 0 by quadratures, once we 
have solved the planar system for the complex 
scalar X. 

We obtain the phase portrait of the equations 
for X by calculating the level lines of the Hamil- 
tonian (3.3) at fixed values of J and L. This 
phase portrait is presented in fig. 2, where X~ and 
X2 represent the real and imaginary components 
of X, respectively. The canonical Poisson bracket 
relation between X1 and X2 is {X2, )(1} = 1, corre- 
sponding to the real symplectic form dgl  A dx2. 

Fig. 2 suggests that  the line segment  
{(X1, x2)lXl = 0, X2 z < min(2L,2J)} is a likely can- 
didate for a homoclinic orbit. The equation for X2 
on that line segment is 

and the new symplectic form is - ( 1 / 2 i ) d x / x  
dx*  + d J A  d o + d L  A dO. Note that the trans- 
formation (3.2) is singular on IX [2 = rain(2 L, 2 J).  
This singularity is similar to the singularity at the 
origin of the usual planar polar coordinates. 

Since L and J are constants of motion, their 
conjugate angles ~b and 0, respectively, do not 
enter the Hamiltonian H. Therefore,  these an- 

In most cases the solutions of this equation are 
elliptic functions, which are periodic in t. In such 
cases, the line segment {(Xl ,  X2)lXl  = 0 ,  X2 z < 
min(2L,2J)} represents a segment of a periodic 
orbit. The only case when homoclinic orbits ap- 
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pear  is when L = J. Then we have 

)?2 = 2L - X22, 

with a particular solution 

X2 = ~ t a n h ( ~  t ) .  (3.4) 

The other solutions on the homoclinic orbits can 

be obtained from (3.4) by shifting time t to t - to, 
where t o is an arbitrary constant. On the line 
segment {(Xx, X2)IXI = 0, X22 < min(2L, 2J)}, the 
equations for $ and 0 become 6 = / j =  - to .  
Therefore,  the solutions for the angles $ and 0 
associated to the solution (3.4) are ~/, = - t o t  + 60 

and 0 = - t o t + 0  0. 
Returning to the (x,  u, v) coordinates via eqs. 

(3.2) and using the quadrature relations for 
and 0, allows the homoclinic solutions (3.4) to be 
expressed in the original phase space as 

x = ~ sech( 2v~-L-- t )  e i ( - ' t+* ' ) ,  (3.5a) 

u = i2vr~ -- tanh( 2x/2-E t )  e i(-2°'t+*°+°°), (3.5b) 

v = ~ sech( 2v~L- t )  e i(-'a+°°). (3.5c) 

Because the system (3.1) is autonomous, all the 
other  solutions on the same orbit are again ob- 
tained by shifting time t to t - t 0. 

Formulae (3.5) describe a three-parameter  
family of  homoclinic orbits parametr ized by L, ~b 0 
and 0 0. These orbits are homoclinic to the peri- 
odic orbits O L, given by 

x = 0, u --- i2v/~ - e i(-2~°t+c°nstant) ,  V = 0. 

In particular, the solution (3.5) approaches 
the trajectory with u = - i  2v/2L - e i ( - 2 ~ t + 6 ° + 0 ° )  

for t ~ - o %  and the trajectory with u = 
i2v~T e it-2°'t+*°+O°) for t ~ oo. Both of these lim- 

iting trajectories lie on the same orbit 0 L, which 
is a circle of radius ~ in the complex u-plane. 
When to = 0, the orbit 0 L is a circle of  fixed 
points, and the solutions (3.5) with to = 0 are 
heteroclinic orbits connecting antipodal points on 
that circle. (See fig. 3.) 

fFi 
/ 

heteroclinic connections 

Fig. 3. For zero detuning, to, opposite pairs of points on the 
circle of equilibria O~ in the u-plane /7 are connected by 
heteroclinic orbits. 

Having found the homoclinic solutions (3.5), 
we now turn to a geometric description of their 
global phase space structure. We first observe 
that the periodic orbits 0 z (given above) foliate 
the complex u-plane, denoted H -- {(x, u, v) lx  = 

v = 0}. Each orbit 0 L possesses a three-dimen- 
sional stable and three-dimensional unstable 
manifold, ~ r s ( o m )  and ~r"u(oL), respectively. 

These two manifolds coincide to form a three- 
dimensional homoclinic manifold ~It/(OL). The 
manifold 7//'(O L) can either be parametr ized by 

the parameters  t, ~0 and 0 0 in eqs. (3.5) with a 
fixed value of L, or can be described implicitly by 
the equations 

toL + toJ - H = 0, (3.6a) 

J - L = 0, (3.6b) 

L -- constant,  (3.6c) 

which hold on the orbit 0 L and, therefore, by 
continuity also on the manifold ~ f ( o L ) .  In the 

(x, u, v) coordinates, eqs. (3.6) describing the ho- 
moclinic manifold ~r-'(O L) become 

½xu*v + ~x , v  = 0, (3.7a) 

½lxl 2 - ½[vl z = 0, (3.7b) 

½1 u l 2 + ½1 v l 2 = constant.  (3.7c) 

Heuristically, each homoclinic manifold ~ f ( O  L) 
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OL 

Fig. 4. Each homoclinic manifold W(OL) is the Cartesian 
product of a “pinched” two-torus and a circle. The unstable 
periodic orbit OL lies at the center of the pinched torus. 

can be thought of as the Cartesian product of a 
“pinched” two-torus and a circle. (See fig. 4.) 

The union of the manifolds W(OL) is the 
four-dimensional homoclinic manifold ZVUI>, 
connecting the u-plane ZI to itself. The mani- 
fold 5VUI) can now be parametrized by eqs. 
(3.5) using all four parameters, or described 
implicitly by (3.6a, b) or (3.7a, b). Each three- 
dimensional manifold %V(OL) is the intersection 
of the four-dimensional manifold w(II> 
with one of the five-dimensional manifolds 

AL = ((x, u, u)lL(x, u, u) = constant} in the six- 
dimensional phase space. Moreover, each 
manifold %‘(OL) is the intersection of 
?Y(II) with the five-dimensional manifold AH = 
{(x, u, u)lH(x, U, u) = constant}, where the con- 
stants in the definitions of AH and AL are 
connected by the relation H = 2oL. (This rela- 
tion follows from (3.6a) and (3.6bj.I Thus, 
each homoclinic manifold FIOL) lies inside a 
unique four-dimensional manifold dH, ’ = 
((x, U, v)lH(x, u, u> = constant, L(x, U, u) = 
constant}, where the constants are connected by 
the relation H = 2wL. This geometry is sketched 
in fig, 5. 

4. Persistence of invariant manifolds 

We now investigate persistence under the e’- 
perturbation of the structures described in the 

x 
0 

phase angle 

Fig. 5. The union of the homoclinic manifolds W(OL) is the 
four dimensional homoclinic manifold W(v(n), connecting the 
u-plane II to itself. A given homoclinic manifold W_(OL) lies 
on a manifold J”,L, which is an intersection of level surfaces 
of the conserved quantities H and L. 

previous section. This investigation is facilitated 
by conservation of L and its associated phase 
symmetry remaining under the perturbation. We 
proceed by using yet another canonical transfor- 
mation to separate out the action-angle pair, L 
and its conjugate phase angle. This separation 
reduces the perturbed equations to a form in 
which persistence of the periodic orbits and their 
stable and unstable manifolds discussed in the 
previous section may be proven with elementary 
methods, such as the implicit function theorem 
and the usual stable manifold theorem (see refs. 

117, 181). 
We begin by performing the canonical coordi- 

nate change 

x=x, U= dge’q, u=zeiQ, 

valid for lz(* < 2L. (Again, there is a singularity 
in these coordinates akin to that for planar polar 
coordinates at the origin.) The Hamiltonian H in 
these coordinates is 

H=2wL+3w(x-E(*-folz12 

-id_ (xz +x*z*), (4.1) 

and the new sympleotic form is - (1/2iXdx A 
dx* + dz A dz*) + dL A dq. The equations for 
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x and z decouple from those for L and ~0, and 
become 

2 =  - ioJ (x -  E) +ix/2t-Izl2z *, (4.2a) 

2 = itoz + il/2L - Izl 2 x* 

i z 
2 V/2L_ iz12 (xz +x'z*). (4,2b) 

For E = 0, the point Po at the origin x = z --- 0 
is a fixed point of this system, whose linearized 
equations are 

A = - i t o x + i  2v'2--L-z*, ~ = i ~ o z + i  2v/2v/2v/2v~Lx *. 

The stability matrix of this equilibrium at the 
origin is thus 

o ~o o 2v~Z- 

- , , ,  o 2v~E o 

o ~ o -o~ 

2V~-E o ,o o 

(4.3) 

The eigenvalues of this stability matrix are 
±(  2v~L __+ ioJ). Therefore, the origin P0 is a hy- 
perbolic fixed point of the system (4.2). (In fact, it 
is a spiral-saddle with two unstable and two 
stable directions.) Returning to the (x, u, v) coor- 
dinates, we see that the (x, z) origin P0 corre- 
sponds precisely to the periodic orbit 0 L in the 
u-plane H. 

By the implicit function theorem, a fixed point 
near the origin of the (x, z) coordinates persists 
in (4.2) for small but nonzero E. Moreover, this 
perturbed fixed point, P~, is still hyperbolic, and, 
therefore, it possesses two-dimensional stable, 
and two-dimensional unstable manifolds, 7fs(P~) 
and 7ru(p,t), respectively. The orbits on these 
manifolds spiral as they approach, or depart from, 
the perturbed fixed point PJ~, due to the form of 
the eigenvalues of the linearized problem. The 
perturbed fixed point P~ together with its stable 
and unstable manifolds ~fc~s(P~) and gt '"(P~) 
also varies smoothly with L. 

~ ~ . o L  \ phase angle 

\ WS(oL) '- W(o  L) 
Fig. 6. The perturbed periodic orbit O~ possesses smooth, 
three-dimensional stable and unstable manifolds, ~ s ( o ~ )  
and ~r"u(O~), which both limit on the unperturbed homo- 
clinic manifold ~r(OL) as ¢ ~ 0. 

To reconstruct the full solution, we add the 
angle ~o back into the picture via a quadrature. 
Thus, the fixed point for the perturbed equations 
(4.2) becomes a periodic orbit O~ for the original 
equations (2.2). This perturbed periodic orbit 
possesses smooth three-dimensional stable and 
unstable manifolds, denoted ~I¢~s(o~) and 
7f"(O~), respectively, both of which limit on 
7//'(0 L) as e ~ 0. (See fig. 6.) The frequency of 
the periodic orbit O~ is - OH/OL = - 2to + 
ef(L, ~), where f is a smooth function of L and 
E, determined by evaluating the derivative OH/aL 
at the perturbed fixed point P~. The orbit O~, 
together with its stable and unstable manifolds 
~rC/'s(o~) and 7¢~u(o~), lies inside the perturbed 
manifold .~¢~,t, on which H and L are con- 
nected by the smooth functional relation H = 
h(L, E), with h(L,O)= 2oJL. The precise form of 
the function h(L, ~) for nonzero e may be ob- 
tained by inserting the values of x and z at the 
perturbed hyperbolic equilibrium P~ into the 
Hamiltonian (4.1). 

The union of the perturbed periodic orbits O, z 
is a two-dimensional surface/ / , ,  parametrized by 
L and q~, and lying @(e),close to the unperturbed 
u-plane /7. Stable and unstable manifolds 
7 f s (o~)  and 7f"(O~) of the perturbed periodic 
orbits O, L in 17, form two smooth four-dimen- 



280 D.D. Holm, G. Kova~i~ / Homoclinic chaos in a laser-matter system 

phase angle 

Fig. 7. The union of the stable and unstable manifolds 
~Ir's(O,L) and ~g'u(O,t') of the perturbed periodic orbits O~ 
form two smooth four-dimensional manifolds, Sr~(//,) and 
~¥~U(H,), lying near the union of the unperturbed homoclinic 
manifolds, ~gr(H). 

sional manifolds, ~le's(//,) and ~ u ( / / , ) ,  which 
both limit on 7//'(/-/) for e --* 0. (See fig. 7.) 

We cannot expect the manifolds 7f~(H,) and 
~t-~a(H~), and even less the smaller-dimensional 
manifolds ~lt"~(O~) and ~¢'u(O~), to coincide for 
nonzero E as they did for e = 0. However, they 
may intersect along subsets of smaller dimension. 
Such intersections may give rise to interesting 
behavior, including chaos. We investigate the cri- 
teria for ~rP~(O~) and 7 fu (o~)  to intersect in the 
next section. 

5. H o m o c l i n i c  i n t e r s e c t i o n s  o f  i n v a r i a n t  

m a n i f o l d s  

In this section, we use the Melnikov method 
[19-27], in order to investigate the intersections 
of the stable and the unstable manifolds, ~rr~(O~) 
and 7,e~(O~), of the perturbed periodic orbits 
O~ in the perturbed surface H,. This method 
consists of computing an approximate distance 
between pairs of points on the manifolds ~;¢/'s(o~) 
and ~r/~(O~), and concluding by using the im- 
plicit function theorem that, near points where 
this approximate distance vanishes, so must the 

true distance. At those points, the manifolds 
~r¢s(o~) and 7fu(O~) intersect. 

We must, therefore, locate pairs of points on 
~gFs(O~) and 7fu(O~), between which we will 
compute the distance. First, we parametrize the 
perturbed manifolds ~ ' s (o~)  and ~ ( O ~ )  by 
using the unperturbed homoclinic manifold 
~/¢'(0 L) to provide the proper coordinate chart. 
The unperturbed manifold 7//(0 L) is para- 
metrized by the coordinates t, ~b 0 and 00, via 
expression (3.5) for the homoclinic solutions. To 
each point a in the unperturbed manifold 
~f(oC), we assign a unique point a s in the per- 
turbed stable manifold ~rrs(O~) and a unique 
point a, ~ in the perturbed unstable manifold 
~fC'u(O~) in the following way. We consider the 
normal space "~a to the unperturbed manifold 
~;¢/(0 L) at a. Since 7f(O L) is implicitly described 
by eqs. (3.6), every vector in the normal space ~,a 
is a linear combination of the three independent 
normals to the unperturbed manifold ~f(ot) ,  
which can be computed from (3.6). These three 
normals are 

n I = ~oVL + toVJ - V H ,  •2 = V J  - V L ,  

n 3 -- VL. 

By construction, in a small enough neighborhood 
of a, the normal space "~a intersects the unper- 
turbed manifold ~t¢/(O L) transversely in precisely 
the point a. Since transverse intersections survive 
small perturbations, the normal space ,~a also 
intersects the perturbed manifolds ~"s(O,C) and 
~it"u(O~ ~) transversely in at least one discrete point 
each. Of all the intersection points of ~a and the 
stable manifold ~r/s(O~) inside a small enough 
neighborhood of the point a, we choose a s, to be 
the one that takes the least amount of time to 
reach any arbitrarily small neighborhood of the 
periodic orbit O, L. Likewise, we choose a~ to be 
the point of intersection of ,~  and the unstable 
manifold ~;¢"u(o~) that takes the least amount of 
time going backward to reach any arbitrarily small 
neighborhood of O~. (The choice of the points a s 
and a~ is sketched in fig. 8.) At each point a in 
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W ( o  z) u 

o ..::7/ 

o L WS(o  L) 

Fig. 8. The  unper turbed homoclinic manifold ~¢"(0 L) pierces 
the normal space ~ .  at the point a. The  perturbed stable and 
unstable manifolds ~ ' s ( o L )  and ~¢'u(oL) pierce ~'a near  the 
point a at the points a s and a u. 

U 

/Za 

Fig. 9. The  points a s , and a~ lie on the same level surface 
atv,/~'L. Therefore,  only one component  of  the vector a u - a  s 
needs to be calculated in order to determine when this vector 
vanishes. When  the vector a u - a s  vanishes, the perturbed 
stable and unstable manifolds ~l rs(o~)  and ~v'u(~) intersect. 

the unperturbed manifold 7 f ( o L ) ,  we use the 
difference between the corresponding points a s 

u u _  a s) in order to and a,  (that is, the vector a~ 
compute the distance between the stable and 
unstable manifolds ~v"s(o~) and ~ir"(O~). In 
particular, if the vector a u - a ' ,  vanishes, the 
manifolds ~¢,'s(o~) and ~ u ( O ,  u) intersect at the 
point a~ = a u. 

At first, it seems that one must compute all 
U S three components of the vector a,  - a~, along n 1, 

n z and n3, in order to establish intersection of 
the manifolds ~vs(O~) and 7¢'u(o,L). However, 
one should remember that both H and L are 
constants of motion, even for nonzero ~. This 
means that both ~i~s(o~) and ~ u ( O ~ )  are con- 
tained in the same manifold atve, L. Moreover, 
this manifold .~tv~, L is transverse to the normal 
space Ea to the unperturbed homoclinic manifold 
~f (O L) at the point a, since its two normals VH 
and VL are contained in the normal space Za, at 
least for e -- 0. Therefore,  we conclude that ate/-/. L 
and Za intersect transversely near a along a 

S U curve, which contains both the points a,  and a, .  
This geometrical fact implies two functional rela- 
tions among the three components of the vector 
a,U _ a~,S and hence only one of the three compo- 
nents needs to be calculated in order to establish 

that the manifolds ~l~"s(o~) and ~r"u(o~) inter- 
sect. (See fig. 9.) 

We choose to compute the component of the 
u s along the normal n z. The compo- vector a~ - a,  

nent along n 2 is equal to 

(a u - aS, nz(a )) 
d ( a , c )  = iln2(a)l [ , 

where ( .,,. ) denotes the usual scalar product in 
R 6 and I1" II is the corresponding norm. The nu- 
merator can be Taylor expanded (see refs. [25, 
27]) to become 

(a~ - a~, n2(a))  = aM( L; ~o, 0o; to) + @(ez).  

The expression 

M(L;~Oo,Oo;w)= f ? ~ n 2 ( a ( t ) ) , g ( a ( t ) ) ) d t  

is called the Melnikov function, and is evaluated 
along the unique unperturbed homoclinic solu- 
tion a(t), given by expressions (3.5) and passing 
through the point a. The vector g is the ~'(e) 
perturbation part of tl~e vector field (2.2). In 
components, we have 

n2 = ( x l , x 2 , 0 ,  O , - v l , - v 2 )  
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and 

g =  (0, co,0,0,0,0). 

~0 = ~r. We address transversality of these inter- 
sections in the next section. 

We therefore compute the Melnikov function to 
be i 6. Transversality of homoclinic intersections 

M( L;  ~O o, 00; to) = to f_" x 2 ( a ( t ) )  dt  

= to 2vC2-L - f_~  sech( 2 ~ t ) s i n ( - t o t  + 0 0 ) d ,  

-- osec ( 
Note that the Melnikov function depends on 

neither t nor 0 o. The fact that it does not depend 
on ,t (even though each individual point a does) 
means that the function M(L; ~o, 00; to) is con- 
stant along the unperturbed homoclinic orbits. In 
particular, if M(L;~bo, Oo;to) vanishes at some 
point a, it will vanish along the whole homoclinic 
orbit parametrized by a(t). This was to be ex- 
pected because of the invariance of the manifolds 
7f~(O~) and ~'u(o,L); namely, if ~¢~(O~) and 
~ 'u(o,L) intersect in a point, they must intersect 
along the whole orbit passing through this point. 
The fact that the function M(L; 0o, 00; to) does 
not depend on 00 is a consequence of the rota- 
tional symmetry of the perturbed Hamiltonian 
(2.3) with respect to the angle 00 and the corre- 
sponding conservation of L. 

The Melnikov function M(L; 0o, 00; to) in (5.1) 
has simple zeros at ~0 = 0 and 00 = "rr. By using 
the implicit function theorem on the distance 
function d(a, e)/E, we immediately conclude that 
the manifolds 7fs(O,/-) and 7f~(O~) intersect in 
the normal space Ea at every point a coordina- 
tized by an unperturbed homoclinic solution (3.5) 
for which 00 = 0 or 00 = "rr. Keeping in mind that 
the quantity L is fixed on the manifolds 7f~(O, L) 
and 7~¢u(o~), we find that the three-dimensional 
manifolds 7fs(O~) and 7yu(o~)  intersect along 
two two-dimensional surfaces, parametrized by t 
and 0 o in the solutions (3.5) with 00 = 0 and 

In this section we discuss transversality of the 
intersections of the perturbed manifolds 7~'~(O~) 
and 7fu(O~) inside the manifold I / ,  n'L. (See 
refs. [24, 26, 27].) We begin by recalling that both 
7 f s (o ,  L) and 7fu(O~) are three-dimensional, 
their intersections are two-dimensional and the 
manifold At', n 'c  is four-dimensional. The rule 
that the dimension of the transverse intersection 
of two manifolds inside the third one equals 
the sum of the dimensions of the intersecting 
manifolds, minus the dimension of the ambient 
manifold, leads us to the conjecture that the 
intersections of 7fs(O, L) and 7fu(O, L) inside 

A'ff' L should be transverse. However, this rule is 
only a necessary criterion for transversality, and 
therefore, we must still prove the conjecture. 

To prove the transversality of the intersections 
of the stable and unstable manifolds 7fs(O~) and 
7fu(O~) of the perturbed periodic orbits O~ 
inside the manifold ~t', n' L, we must show that at 
any intersection point a~ = a~, the tangent spaces 
TTfs(O~) and T ~ ( O ~ )  of the intersecting 
manifolds 7f~(O~) and 7¢~(O~), respectively, 
add up to the tangent space Tft', n' L of the level 
manifold A'~ 'L at a~=a~. We show this by 
explicitly computing the respective bases of the 
tangent spaces TTfs(O~) and TTfu(O~) at the 
intersection point a ~, ---a~, and showing that we 
can pick a basis of the tangent space T~/, n ' t  
from among their linear combinations. We also 
show the reason that we can combine the bases of 
TTfs(O, c) and TTfu(O, c) into a basis of T.¢/~ 'c 
to be that the zeros in 00 of the Melnikov func- 
tion M(L; ~o, 0o; to) are simple. 

We begin by noting that the three vectors 
Oa/Ot, Oa/O~b o and Oa/OO o, which can be calcu- 
lated from the homoclinic solution (3.5), span the 
tangent space TTf(O L) of the unperturbed ho- 
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moclinic manifold 2Y(OL) at the point a. Since 
W(OL) is contained in one of the manifolds 

dHsL, the same inclusion holds for the respective 
tangent spaces. Now, the tangent space T.k’*L 
of dHsL at the point a is four-dimensional, so 
we need to add one more linearly-independent 
vector to the set aa/&, aa/at,b, and &r/de,,, in 
order to find a basis for T+&‘vL at the point a. A 
suitable additional vector is the projection ii, of 
the normal n2 onto T&H,L, given by 

ii,=n,- (n,,VL) vL _ (n,,VH) vH 

llW12 llVHl12 ’ 

This vector is nonzero because n2 = VJ- VL, 
and the gradients VH, VL and VJ are linearly 
independent. Also, since n2 is normal to the 
vectors au/at, &z/6’1& and &z/&$,, its projection 
ii, is transverse to them. 

When E is nonzero, the tangent spaces 
TW”(O:) and TF’“(O~) at the points a: and 
a,“, respectively, are spanned by the two triples of 
vectors 

All these vectors are contained in the perturbed 
tangent spaces T.&$ ’ at their respective base 
points a: and a,“. Moreover, if these points coin- 
cide so that as = a:, the vectors (6.1), which now 
lie in the same tangent space T_&?EH3L, are still 
transverse to the projection ii,,, of the normal n2 
onto the perturbed tangent space T_4?CH~L to the 
manifold LTg ’ at the point a: = a,“. Therefore, 
if we find any linear combination of the six vec- 
tors (6.1) which has a nonzero projection along 

n2,o then these six vectors span the perturbed 
tangent space T.,@C”3L. This last statement is 
equivalent to saying that W”(OE’) and Y”(O>) 
intersect transversely inside the manifold _&“s” 
at the point a: = ai. 

Now, any linear combination of the vectors 
(6.1) is contained in the tangent space T.,RCHeL at 

Fig. 10. The intersection of the perturbed stable and unsta- 
ble manifolds W”(O:) and W”(Ok) is transverse when the 
vector &~:/a&, - aas/atiO ha% a nonzero projection onto the 
vector n2,r, or equivalently, onto the vector n2. 

a: = a:. The normal n2 can be written as n2 = 
_ 
IZ~,~ + (n, -i&J, where ii,,, is contained in 
T.&C”,L and the difference (n,-ii,,,) is con- 
tained in its orthogonal complement. It follows 
that the scalar product of any linear combination 
of vectors (6.1) with ii,,, is the same as the scalar 
product of that linear combination with n2, be- 
cause the vectors (6.1) are contained in TdCH,L. 

Therefore, to prove transversality of the inter- 
section of %@CO,“> and ZP(O,L) inside ACH,” at 
the point a: = a:, we need only find a linear 
combination of vectors (6.1) whose scalar product 
with n2 is nonzero, One such linear combination 
is the vector au,“/&& - aqa+a. (See fig. 10.1 
Since a: = a: at our intersection point, this state- 
ment follows from the following calculation: 

( aa: aa: 
= a*, aJloyn2 )+ (a:-@,%) 

a&: - a:, n2> = 
a*0 
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evaluated at O0 = 0 or O0 = rr, according to the 
results found in the previous section. By (5.1) in 
the previous section, we have an expression for 
the Melnikov function, 

M ( L ; O o , O o ; t o )  =a'rtosech( W ~ L  )sinOo. 

Therefore, the projection under consideration, 

(~a~ i~a'_ ) _ =  +¢~ tosech(  rrto 
Ol#O i~lkO 'n2 2 - ~ - !  

+~e(C), 

is nonzero for small enough E. 
In s u m m a r y ,  s i nce  t h e  d e r i v a t i v e  

a M ( L ;  qJo, 00; to)/0tk0 of the Melnikov function is 
nonzero at the intersection points, tp o = 0 and 
~O 0 =-rr, the perturbed stable and unstable mani- 
folds ~ s ( O ~ )  and 7/"u(O~) of the periodic orbit 
O, L intersect transversely inside the correspond- 
ing level manifold ¢~¢',/~' L. 

7. Small detuning 

In this section we briefly discuss the second 
near-integrable limit of the Maxwell-Schr6dinger 
envelope equations, namely, the one in which the 
laser probe is nearly frequency-matched with the 
resonant medium so that the dimensionless de- 
tuning to is small, ~o << 1 #3. The unperturbed 
(to = 0) version of this system is 

= iuc*, (7.1a) 

= i x v ,  (7.1b) 

b = i x * u .  (7.1c) 

using the complex symplectic form - ( 1 / 2 i X d x  A 
d x * + d u A d u * + d v A d v * ) .  System (7.1) is a 
special case of eqs. (3.1) with to = 0. Therefore, 
the analysis in section 3 can be specialized here 
to give the homoclinic solutions (cf. eqs. (3.5)) 

x = ~ sech( 2v~-L- t)  e i¢',,, 

u = i 2V2V2V2v~L tanh( 2v~-L- t)  e i(*°+°o), 

v = ~ s e c h ( ~  t)  e i°°. 

(7.2a) 

(7.2b) 

(7.2c) 

As already mentioned in section 3, these solu- 
tions connect antipodal points on the circle O L of 
radius ~ in the complex u-plane //. The cor- 
responding homoclinic manifold ~t~'(O L) can now 
either be parametrized by expressions (7.2), or it 
can be described implicitly by the equations 

H = 0, (7.3a) 

J - L = 0, (7.3b) 

L = constant, (7.3c) 

whose left-hand sides are identical to the left- 
hand sides of eqs. (3.7). The geometry of the 
homoclinic manifolds ~ ( O  L) and their union 
~¥/'(H) is the same as the geometry of their coun- 
terparts in section 3. 

Persistence of these structures under the per- 
turbation may be shown in the same way as in 
section 4. In particular, one may again transform 
the perturbed Hamiltonian into the form (4.1), 
that is, 

H = 2 t o L  + ½tolx - el z - l to l z l  2 

- ½ ¢ 2 L - I z l  2 ( x z + x * z * ) ,  

and the nontrivial part of the equations into (4.2), 
that is, 

This system can be derived from the Hamiltonian 

H = - ½xu*v - ½x*uv*, 

#3Dimensionally, this means that the detuning is small 
compared to the cooperative frequency oJc, given in section 2. 

= - i t o ( x -  e) + i ¢ 2 L -  Izl z z * ,  

= i w z  + iV/2L - Izl 2 x* 

i z 
2 ¢ 2 L - I z l  2 ( x z  + x ' z * ) ,  



D.D. Holm, G. Kova~i~ / Homoclinic chaos in a laser-matter system 285 

where to is now the perturbation parameter. For 
to = 0, the eigenvalues of the corresponding lin- 
earization of eqs. (4.2) around the origin are two 
degenerate pairs of + 2v~L-. For this form of the 
eigenvalues, the implicit function theorem and 
the stable manifold theorem again imply that the 
equilibrium at the origin of the reduced system 
(4.2) persists under the perturbation (which is 
now comprised of the to-terms) together with its 
stable and its unstable manifolds, and that they 
all vary smoothly with L. 

At this point, however, we must take a slight 
digression from the treatment in section 4. 
Specifically, we must as an extra step determine 
whether the linearized eigenvalues of the per- 
turbed equilibrium have nonzero imaginary parts, 
implying that the equilibrium is a spiral-saddle. 
We must also determine whether the perturbed 
equilibrium in the reduced phase space corre- 
sponds to a periodic orbit, or to a ring of equilib- 
ria in the full phase space. We first calculate the 
lowest-order terms in the Taylor expansions of 
the position of the perturbed equilibrium and of 
its eigenvalues. Setting the left-hand sides of eqs. 
(4.2) equal to zero implies, after some algebra, 
that 

t O E  x=de(to~)' ~= zv~Z- +de(to~)" 

the stable and the unstable manifolds of the 
perturbed equilibrium are again spirals just as in 
section 4; however, their twisting rate is now very 
slow. The quadrature equation for the angle q~ at 
the perturbed equilibrium now is 

~b = -2 to  "t- de(to3).  

Therefore, this perturbed equilibrium in the re- 
duced phase space corresponds to a periodic or- 
bit in the full phase space whose frequency is very 
low. 

The rest of the analysis follows as in the case of 
small amplitude E. In particular, one may use the 
Melnikov method in order to show that trans- 
verse intersections of the stable and the unstable 
manifolds, ~ s ( O ~ )  and 7fu(O~), of the per- 
turbed periodic orbit O~ take place on the corre- 
sponding perturbed level surface .~'~' L. 

Explicitly, the Melnikov function for the small 
to case is 

M(L;g~o,Oo;e ) = f?  (n2(a(t)) ,g(a(t)))dt ,  

where g now is the @(to) part of the vector field 
(2.2), that is, 

g =  ( x2, - x l  + E,u2, - u l , v 2 ,  - v l ) .  

Additional algebra shows that the lowest-order 
approximation of the stability matrix at the per- 
turbed equilibrium is just the matrix (4.3), that is 

o to o 

- t o  o ~ o 

o ~ o - t o  

o to o 

The corresponding perturbed eigenvalues are 
equal to + { ~  + @(to) + ito[1 + de(to)]}, where 
the de(to) quantities are real. (Due to the Hamil- 
tonian nature of the problem, the eigenvalues 
come in a "quartet".)  Thus, we see that orbits on 

The Melnikov function thus turns out to be 

oo 

M( L;  ~b0,00; E) = E f_" x 2 ( a ( t ) )  dt  

= e 2v~L-- sin ~b0L ~ sech( 27r2L--t)dt = "rr,sin ~b 0. 

As in section 5, this function has transverse zeros 
at ~0 = 0 and ~b 0 = rr. Therefore, the geometry of 
the transverse intersections caused by the probe 
laser in the case of small detuning, to, is the same 
as in the case of small amplitude, E. Hence, the 
Smale horseshoe construction presented in the 
next section will be the same for both types of 
perturbations. 
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8. Smale horseshoe and chaotic dynamics 

The Melnikov analysis presented in the previ- 
ous three sections shows that the stable and un- 
stable manifolds of the hyperbolic periodic orbits 
0 L develop transverse intersections under the 
perturbations introduced by the probe laser. (For 
definiteness, we refer in this section only to the 
G-perturbation case. The to-perturbation case fol- 
lows along the same lines.) These transverse in- 
tersections take place in C 3 (with coordinates 
(x ,  u , v ) )  and lie on the level surfaces .4~¢y 'L. We 
show in this section, by extending a result of 
Devaney [16], that this presence of transverse 
intersections implies chaotic dynamics for phase 
points in the vicinity of these intersections. 

Devaney [16] treats the case of an autonomous 
two-degree -of - f reedom Hami l ton ian  system 
whose phase space is C 2. In Devaney's case, 
transverse intersections of the two-dimensional 
stable and unstable manifolds of a spiral-saddle 
fixed point form a single, one-dimensional, 
Hamiltonian, spiral-saddle connection orbit in 
the three-dimensional level surface of the con- 
stant Hamiltonian that contains the spiral-saddle 
fixed point. In order to show that chaos results 
from this Hamiltonian spiral-saddle connection 
orbit, Devaney constructs a return map, 4 ,  de- 
fined in the phase space C 2 by composing two 
maps, 4 0 and 4 p  The first map, 4 0, is defined 
locally near the fixed point. This map pushes a set 
of phase points that is initially close to the 
spiral-saddle fixed point (and lies on a small 
two-dimensional surface transverse to the flow 
near the stable manifold of the fixed point) to a 
set of phase points that lies on another surface 
close to the fixed point and is transverse to the 
flow near its unstable manifold. The second map, 
41 , is the global part of the return map 4 .  The 
map 41 takes the result of the first map 4 0 back 
around the homoclinic orbit into the region of the 
first set of initial phase points. Devaney [16] shows 
that iteration of the return map 4 ,  that is, the 
composition map 41 o 40, produces an invariant 
Cantor set of points on which the dynamics are 

equivalent to a Bernoulli shift on two symbols. 
Thus, one-dimensional transverse intersections in 
C 2 forming a Hamiltonian spiral-saddle connec- 
tion orbit result in chaotic dynamics via sensitivity 
to initial conditions for phase points in the vicin- 
ity of these intersections. 

The Maxwell-Schr6dinger problem we treat 
differs from Devaney's case in having C 3 as its 
phase space instead of C 2, and in having hyper- 
bolic periodic orbits instead of a spiral-saddle 
fixed point. However, the Maxwell-Schr6dinger 
problem does have the extra conserved quantity 
L. As we have seen in section 4, this extra con- 
served quantity implies that the Maxwell-  
Schr6dinger dynamics decomposes locally into the 
Cartesian product of a flow on C 2 (in the (x, z) 
coordinates in (4.2)) times action-angle dynamics 
for the pair (L,  ~p). The reduced (x, z) flow on C 2 
has a spiral-saddle fixed point (this is the peri- 
odic orbit O L in the full phase space C3); so we 
seek the analogy of the Devaney construction of 
the Maxwell-Schr6dinger case. 

The local map 40 in the first part of Devaney's 
construction extends easily to the Maxwell- 
Schr6dinger case simply by applying it to the C 2 
part of the flow in terms of the reduced coordi- 
nates x and z in the vicinity of the perturbed 
periodic orbit O L. The global part 41 of the 
return map is obtained in the Maxwell-  
Schr6 dinger case by lifting the dynamics to C 3 
(with coordinates ( x , u , v ) ) ,  flowing along the 
two-dimensional homoclinic intersection surface 
back into the vicinity of O L, and then factoring 
out the angle ~p to return to the local coordinates 
x and z in C 2. By extending Devaney's construc- 
tion to include the global geometry associated 
with the action-angle pair (L,  ~p), we show that 
iterations of the return map 4 = 40 o 41 in C 3 
now produce a Cantor-set structure times an in- 
terval (for L)  and a circle (for ¢). (For conve- 
nience we will define our map 4 as the compos- 
ite 4 = 40 o 41; that is, we will take the composi- 
tion in the reverse order from that in ref. [16].) 

The two-dimensional homoclinic intersection 

surface defining the map 41 is the analog for the 
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Maxwell-Schr6dinger case of the one-dimen- 
sional Hamiltonian spiral-saddle connection or- 
bit in Devaney's construction. In fact, there are 
two such homoclinic intersection surfaces in the 
present case in C 3, at ~b 0 = 0 and ~b 0 = ~r, which 
would correspond to a pair of Hamiltonian spi- 
ral-saddle connection orbits in C z. Because a 
pair of intersection surfaces arises in this case, 
the chaotic dynamics manifest themselves slightly 
more clearly here than in the case treated by 
Devaney. Namely, phase points switch intermit- 
tently from one intersection surface to the other, 
and this intermittent switching shows extreme 
sensitivity to initial conditions. 

In the remainder of this section, we explicitly 
construct the Smale horseshoe for the Maxwell- 
Schr6dinger problem. In this construction, we 
utilize as much as possible the results obtained by 
Devaney [16]. In order to construct the Smale 
horseshoe, we perform the following steps. First, 
we describe the local decomposition of both the 
phase space and the invariant manifolds in the 
vicinity of the periodic orbit O, L. Next, we define 
two local cross-sections to the flow near the sta- 
ble and unstable manifolds of the periodic orbit 
O, L. These cross-sections are then used to define 
the maps qb 0 and tP 1. And finally, we identify the 
Cantor-set structure invariant under the return 
map • = ~0 ° tPl and describe the chaotic dy- 
namics of phase points whose initial conditions 
lie in that invariant Cantor set. 

The previous three sections show that the 
probe-laser perturbation causes two-dimensional 
transverse intersections of the stable and unstable 
manifolds ~fs(o~)  and ~rpu(o~) of the per- 
turbed periodic orbit O~ to occur globally in C 3. 
Of course, this global structure implies transverse 
intersections of the manifolds ~;~'~(O~) and 
~ u ( o ~ )  in any local neighborhood of O~ as 
well. Factoring out the angle q~ in this neigh- 
borhood reduces the intersections of ~'s(O~) 
and ~ru(o~) to one-dimensional, and expresses 
them in the local C 2 coordinates (x, z) needed to 
adapt Devaney's construction to the Maxwell- 
Schr6dinger case. 

In the local coordinates (x, z), the perturbed 
periodic orbit O, z" is the Cartesian product P~ × ~p 
of a fixed point P,~, which lies close to the origin 
of the (x, z) coordinates, with the angle ~p. The 
manifolds ~tes(O~) and ~rr/u(o~) can also be de- 
composed as Cartesian products 7 f s ( o ~ ) =  
~lt"~(P~) X ~o and ~//'u(o~) = ~;¢r u(p~) X ~p, where 
these relationships are valid locally for the parts 
of the stable and unstable manifolds close to the 
perturbed periodic orbit O~ and the perturbed 
equilibrium p L, respectively. Moreover, since the 
stable manifold ~r¢~(O~) intersects the unstable 
manifold ~ u ( o ~ ) ,  both manifolds return to any 
small neighborhood of O~. The returning pieces 
of the stable and unstable manifolds of the peri- 
odic orbit O~ can also be decomposed locally 
near O~ as Cartesian products; we denote this 
decomposition of the returning pieces by 7,¢'~ × ~p 
and ~ × ~p, respectively. It should be clear that 
the reduced manifolds ~¢Pr~ and ~¥-u(p~), and 
7,¢~(P, L) and 7/-'~ intersect transversely, because 
the original stable and unstable manifolds 
~r/~(O~) and ~r/u(O~) of the periodic orbit O, L 
do so. 

In order to facilitate the construction of the 
return map ~, we translate the perturbed fixed 
point p L to the origin of the coordinates in C 2. 
Then, the theorem proven in ref. [28], shows that 
new local symplectic coordinates (x, z) near the 
perturbed fixed point P~ exist in which the (x, z) 
part of the flow is given by 

(x(O),  z (O) )  ~ (e (A +iB)tx(O), e - ( A  +iB)tZ(O)). 

This flow is generated by the Hamiltonian 

H = a(xz  + x ' z * )  + i/3(xz - x ' z * )  + ~(4) ,  

where @(4) denotes quartic and higher order 
polynomials. Here a and /3 denote the real and 
the imaginary part of the quartet of the eigenval- 
ues _+(a _+ i/3) at the equilibrium P~. The quan- 
tities A and B are analytic functions of the initial 
conditions xl(0), x2(0), zi(0) and z2(0) in the new 
phase space coordinates, with A = a and B =/3 
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at the (x, z) origin (0,0), that is, at the equilib- 
rium PC. (This local representation of the flow is 
the basis for the ensuing construction of the local 
map ~0.) As for the other variables, L is a 
constant of motion and ~p is a quadrature that 
decouples from the motion in the new local C 2 
variables (x,  z). In these new local coordinates, 
x = 0 defines the local stable manifold 7//~(P c )  of 
the fixed point PC, and z = 0 defines its local 
unstable manifold 7f" (PC) .  

We are now ready to define two local trans- 
verse cross-sections to the reduced (x, z) flow 
near the stable and the unstable manifolds 
7 ~ ( P C )  and ~ " ( P C )  of the equilibrium PC. 
(The unreduced counterparts of these cross-sec- 
tions may be obtained by taking their Cartesian 
products with the angle ~o.) For small enough 
positive numbers d~, d u, 8 s and 8 u, the two solid 
tori 

.~s = { (x ,z ) l  Ixl ~ds ,  lZl =~s}, 

~"-{(x,z)l  Ixl =~,lzl  ~du} 

are transverse to the reduced flow near the per- 
turbed equilibrium PC. Let ~r ~ and o'" be the 
intersections of the transverse tori ,vs and ,~" 
with the stable and the unstable manifolds 
~ ( P C )  and 7 f " ( P  c )  of the fixed point PC. So 
the intersections tr s and tr" are the two center 
circles of the solid tori ,~  and ,~", respectively. 
Each of the transverse solid tori y s and ,~" 
intersects the manifold ~, , , ,L (with H and L 
having the same value as for the fixed point P~)  
in an annulus ,~g or , ~  that contains the appro- 
priate circle o "~ or u u. That  is, the circles tr ~ and 
o'" are the intersections of the stable and unsta- 
ble manifolds 7ys(pC) and ~ " ( P C )  of the fixed 
point PC with t h e  annuli ~,~ and ~ ,  respec- 
tively. 

The reduced manifolds 7f~(P, c) and 7fr~ in- 
tersect along two orbits spiraling towards the 
fixed point PC. Likewise, the reduced manifolds 
7 ~  and 7¢~(PC) intersect along two orbits spi- 
raling away from the fixed point pC. Let the two 

intersection orbits of the reduced manifolds 
~ s ( P  c )  and ~;¢'~ be denoted by 7~ and y~, and 
let the intersection orbits of the manifolds 7//~ 
and 7fu(PC)  be denoted by 7~', and y~. We 
choose the labeling in such a way that the orbits 
3'2 and y?, with the same i, are the reduced 
representations of the same intersection surface; 
that is, the cylinders 7~ × 9 and Tin × q~ lie on the 
same branch of the intersection ~;¢/s(OC) C~ 
~ " ( O  c )  near the perturbed hyperbolic periodic 
orbit O~. The orbits y~ and y~ intersect the 
circle ~r ~ (transversely inside ~ ( P C ) )  in two 
points q[ and qS2. Likewise, the orbits y~' and 7~ 
intersect the circle tr" (transversely inside 
~Tf"(PC)) in two points q~ and q~ Let us also 2. 
denote by ~'~ and ~'~ the two curves of intersec- 
tion of the reduced manifold ~r~ with the annu- 
lus ~g, and let us denote by z~' and ~-~ the two 
curves of intersection of the reduced manifold 
~;¢r~ with the annulus , ~ .  We again choose the 
labeling in such a way that each curve r7 passes 
through the corresponding point qi ' with the same 
i, and that each curve r? passes through the 
corresponding point q/U with the same i. (See fig. 
11.) 

The global flow takes the circle q~' × ¢ into the 
circle q~ × ~, and takes the circle q"2 × ~P into the 

T s p L  •0  T, s _ . , u  I /-/.,/.w. 
/ 

,,,s J ~ s ',~.s n s aA)sr o L 
q2 ql (Pc) 

Fig. 11. The reduced manifolds g~-~(pL) and g¢'~ intersect 
along two orbits, ~,~ and ~/~, spiraling towards the fixed point 
P~. The orbits y~ and y~ intersect the circle o "s in two points 
q~ and q~. The reduced manifold ~~ intersects the annulus 
.~ along two curves ~'~ and r~. 
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p S ,'1 "S  ,,"t S f'~// ,,,I=U ~ U ( I )  
2 t ' 2  t /2 s ! ' 2  ~'2 t/2 u ~ /$2 

S 2 / 

ql 'l~l Pl ql ~1 Pl / 
S A U 

Fig. 12. After factoring out the angle ~, the action of the E 0  S S E 0 
global flow is to take the points q~ and qU2 into the points q~ 1 | 

and q~, respectively. Also, the segments ~'~ and ~-~ are taken Fig. 13. The first step in the construction of the Smale 
into the segments p] and p~, respectively. Likewise, the horseshoe is the map ~ ,  which takes two strips S 1 and $2 on 
preimage of the segments ~-~ and ~'~ are the segments p~' and 
p~., respectively. Y,~ into two strips St and $2 on ,Y,g. 

circle q~ x ~0. It also takes the cylinder ~'~ x 
into a cylindrical piece p] x ~ of the torus tr ~ X 
around the circle q~ x q~, and takes the cylinder 
~'~ x ~ into a cylindrical piece p) x ~o of the torus 
o'S x q~ around the circle q~ x q~. Likewise, the 
preimage of the cylinder ~'~ x ~ is a cylindrical 
piece p~ x ~  of the torus tr u x ~  around the 
circle q~' x ~o, and the preimage of the cylinder 
~-~ x ~¢ is a cylindrical piece p~ x ~ of the torus 
tr ~ X ~ around the circle q~ x ~. (See fig. 12.) 2 

We may now construct the Smale horseshoe for 
our return map q~. We first choose two strips S I 
and S 2 in the annulus Z~ close to and parallel 
to the curves ~-~ and z~, respectively. We then 
map the solids of revolution S~ x ~ and S 2 x 
into the transverse section 2~ x ~ by using the 
global flow. This mapping constitutes the global 
part, ~ t ,  of the return map qo. The resulting 
images are two solids of revolution ~{t x q~ and 
$2 x~0, where St and $2 are two strips in the 
annulus ~ parallel to, and close to the curves p] 
and p), respectively. (See fig. 13.) Then, we use 
the local (x, z) representation of the flow (8.1) to 
show (just as in ref.  [16], lemma, p. 434) that the 
images of the strips S~ and S 2 'are two pieces of 
fat spirals, V 1 and I,'2, lying in the annulus , ~  
and wrapping towards the circle tr ~. (See fig. 14.) 
By adjusting the thickness of the strips S 1 and S 2, 

we can arrange for the pieces of spirals, V 1 and 
V 2, to intersect S~ and S 2 each in one connected 
piece. (See fig. 15.) The mapping of $1 x ~ and 
$2 x ~ into V 1 × ~o and V z x ~, respectively, con- 
stitutes the local part, q~o, of the return map qo. 
The complete return map, ~,  is the composition 

~ =  ~0 o q~r 
After factoring out the angle q~, the return map 

q~ constructed in this way takes the two strips S 1 
and Sz, lying in the annulus Z~ in (x, z) coordi- 
nates, into two pieces of fat spirals, I/ 1 and I/2, 
lying in the same annulus. This factored map is 

f 
/X 

S 2 

s A U 
2 0  S1 ~ 0  Wl V2 

Fig. 14. The second step in the construction of the Smale 
horseshoe is the map qbo, which stretches the strips $1 and $2 
on ~g radially, compresses them azimuthally, and takes them 
into two pieces of "fat spirals" I/1 and I/2 on ~'~. 
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initial conditions near  the Cantor set A × ~o, these 
switching sequences constitute the mechanism for 
chaotic behavior in our system. 

f) S 2 

Fig. 15. On ,~, the combined map 4 0 o 4j stretches the two 
strips S 1 and S 2 azimuthally, compresses them radially, and 
reinjects them over their original region as two pieces of "fat 
spirals" V 1 and V 2. Thus, 4 o o 41 is a Smale horseshoe map. 

the Smale horseshoe map for our problem. In a 
similar fashion as in ref. [16], one may also show 
that the proper  stretching and contraction condi- 
tions are satisfied for this map. Therefore,  an 
invariant Cantor set, A, of points exists inside the 

rectangles S 1 • V l, S 1 N V2, S z ¢q V 1 and S 2 f) V2, 
on which the return map acts as a shift on two 
symbols. To each point in the Cantor set A we 
can associate a bi-infinite sequence of the digits 1 
and 2, where the nth digit tells whether  the point 

is in the strip S 1 or the strip S 2. 
In terms of the original dynamics, the bi- 

infinite sequences denote circles p × q~ where p 
is a point in the invariant Cantor set A. Each 
point starting on one of these circles will be 
contained in one of the sets S i × q~ (i = 1, 2) after 
the nth iterate of the return map, and will there- 
fore follow one of the orbits in the ith intersec- 
tion surface (i = 1,2), while flowing away from 
the perturbed periodic orbit O~ and then back to 
it. The correspondence between the circles in the 
invariant Cantor set of circles A × ~p and the set 
of bi-infinite sequences of the digits 1 and 2 is 
one-to-one. Hence,  for any given bi-infinite se- 
quence of l ' s  and 2's, there exists a circle of 
initial conditions in the invariant Cantor set A × q~ 
whose orbit switches back and forth in the two 
intersection surfaces exactly as in the given se- 
quence. Together  with the extreme sensitivity to 

9. Physical consequences 

In conclusion, we discuss the physical conse- 
quences of the chaotic dynamics implied by the 
transverse homoclinic intersections found in this 
paper. First, we describe the behavior of a typical 
chaotic trajectory determined from the chaotic 
dynamics obtained in the preceding sections. We 
then make a few observations concerning measur-  
ability of the effects we predict using our 
Maxwell-Schr6dinger model. 

In the previous section, we have characterized 
the chaotic dynamics found in the Maxwell-  
Schr6dinger model as chaotic switching of trajec- 
tories (with initial conditions in the invariant 
Cantor set) between two homoclinic intersection 
surfaces. This means that in the (g',  b+, b_)  enve- 
lope coordinates, the time series for a chaotic 
trajectory could be well approximated by insert- 
ing random parameters  into the expressions for 
the homoclinic solutions according to 

+ 2 sech[ 

b+= +i 2v -Etanh[ 2 L(t-t )]e 

b_= _+ sech[ 

over time intervals ~-~,_~ < t < z~,. Here,  the pa- 
rameters  t~,, 0 r and z~, and the sign may be 
chosen from a random process, /x varies over the 
integers, and ~'u - ~ < tu < ~'~, for all ~.  The phases 
0~,_ 1 and 0 r must also be @(e) or ~'(oJ) close to 
each other, depending on whether  E or to is the 
small parameter .  By continuity, any trajectory 
close to a chaotic trajectory may also be well 
approximated by the same type of expressions for 
a finite amount of time. 

A typical wave form of the time series for the 
electric field envelope 8~ (that is, the brightness 
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T_, 

U 
Fig. 16. The time series for the perturbed electric field 
envelope, g', shows randomly switching sech-like profiles. 

of the light emitted by our laser-mat ter  system) 
for a typical chaotic trajectory is sketched in fig. 
16. This figure shows that the intensity Ig ' l  2 of 
the emitted light will "flicker" in a chaotic fash- 
ion on O'(1) time scales #4. By the above discus- 
sion, we see that this chaotic flickering will occur 
at least for a finite amount of time for material 
samples which are initially close to having all the 
atoms in the excited state. 

Dynamical systems methods thus predict 
chaotic flickering in the output intensity of a 
unidirectional lasing medium (or a superfloures- 
cent medium, see refs. [29, 30] in a single-mode, 
lossless, ring cavity, due to perturbation by a 
phase-matched probe laser. This prediction ap- 
plies in the good-cavity limit, and, thus, during 
the time before losses can cause decay into steady 
states, such as the steady phase-locked states 
discussed in ref. [31]. Because all real experi- 
ments possess some losses, the Hamiltonian 
model discussed here may be expected to predict 
only a transient effect. Strictly speaking, any mod- 
ification of the Hamiltonian model discussed here 
that would include dissipation would probably 
destroy the homoclinic chaos, because losses 

#4Recall from section 2 that since r a~: 1, it makes sense to 
discuss the brightness of light (but not its frequency, that is, 
color) on the ~'(1) time scales of the slowly varying envelope 
approximation. Also, recall that a~(1) time in our nondimen- 
sional variables is ~(1/to c) time in seconds. 

would destroy conservation of the Hamiltonian, 
H, and unitarity, L, upon whose constant level 
surfaces the transverse intersections found here 
take place. Therefore,  it might not be possible to 
construct the Smale horseshoe. Nonetheless, the 
dynamics in the dissipative model would be simi- 
lar to the dynamics in our Hamiltonian model at 
least on finite time intervals, and the smaller the 
dissipation, the longer these time intervals. 

In practice, nearly lossless gain-feedback ex- 
periments are presently being carried out in the 
study of transient optical instabilities in high-Q 
ring cavities [32]. In these experiments, lasing by 
Raman processes is seen to occur in only one 
direction, namely in the direction of the probe. 
Such experiments approximate some of the con- 
ditions under which the present model is derived 
(lossless, unidirectional, single-polarization lasing 
with phase-matched probe) and provide an indi- 
cation that new experiments may be designed to 
approximate the conditions stated in this paper 
more closely. We believe that measuring the 
chaotic flickering due to the effect of a probe 
laser on the output of a unidirectional lasing 
medium is a fruitful direction for further experi- 
mental investigation of t rans ient  effects ifi the 
dynamics of high-Q ring,cavity lasers. 

A link between the chaotically flickering signal 
predicted in this paper and the signal produced 
in an experiment may be established by using 
various diagnostic procedures. The simplest such 
procedure is the comparison of the power spectra 
of the theoretically predicted solutions with the 
experimental output. The form of the power 
spectrum of the light intensity if' produced by the 
chaotic trajectories in our Maxwell-Schr6dinger 
model may be computed by the methods of 
Brundsen and Homes [33] and Brundsen, Cortell, 
and Holmes [34]. In a properly prepared experi- 
ment, that is, one in which K << E << 1 or K << 
to << 1, the homoclinic chaos predicted in this 
paper should dominate over the chaos produced 
by the breakup of subharmonic resonance bands 
and their subsequent interaction. Thus, in such 
an experiment, material samples whose atoms are 
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initially all close to the excited state should pro- 
duce signals whose power spectra would compare 
favorably with those calculated by using the 
Maxwell-Schr6dinger model. Samples that are 
initially less excited should, in turn, produce 
power spectra that are almost discrete, and only 
slightly broadened due to the weak effects of the 
subharmonic chaos. 

The power spectrum of the emitted light in- 
tensity is just one of the easily measurable quan- 
tities which may be calculated by using the 
Maxwell-Schr6dinger model. Finding and calcu- 
lating other such quantities and comparing them 
with experimental results present interesting the- 
oretical and experiment and would cast addi- 
tional light on the field of chaotic laser-matter 
dynamics. 
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g = 2 e ,  and introducing the following phase- 
invariant variables (Stokes parameters): 

, ~ = 2 i b + b * ,  ~ r = l b + [  2_ ib 12, 

where (dropping the tilde) g~=g~l +ig~2 and 
=~1 + i~2 are complex and 0~ is real. The 

resulting perturbed Maxwell-Bloch equations are 

= ~ ,  (A.la)  

. ~ =  ( ~  + e ei°")_~, (A.lb)  

~ = - ~ I [ ( $ ' + e e i ~ ' ) 9 *  + (~* + e e - i ° ~ ' ) g ]  

(A.lc) 

The perturbed Maxwell-Bloch problem inher- 
its the homoclinic structure and the chaotic dy- 
namics discussed in the text for the perturbed 
Maxwell-Schr6dinger equations, simply as a re- 
sult of this change to phase-invariant variables. In 
the Maxwell-Bloch representation of this prob- 
lem, the transverse intersection surfaces dis- 
cussed in the text become true Hamiltonian 
spiral-saddle connection orbits in a rotating 
frame. (See ref. [35].) In the fixed frame, these 
chaotic dynamics in the vicinity of the Hamilto- 
nian spiral-saddle connection orbits remain near 
the two unperturbed homoclinic orbits given by 

Appendix A. Restricted perturbed 
Maxwell-Bloch dynamics 

In this appendix we analyze the homoclinic 
chaos found in a simplified three-dimensional 
Maxwell-Bloch model of laser-matter dynamics. 
As we shall see, this simplified model is essen- 
tially the same as the approximate pendulum 
model discussed in ref. [11]. The simplified 
three-dimensional Maxwell-Bloch model also 
possesses global geometric structures analogous 
to those used in the main body of the paper. 

Starting from the perturbed Maxwell-Schr6- 
dinger equations (2.1), the perturbed Maxwell- 
Bloch equations are derived by rescaling ~ - -  2~,  

-- _+ v/K sech(~K t), 

= -T- v ~  sech(V~ t ) tanh(7~- t ) ,  

--- K[1 - 2 sechZ(x/-Kt)], 

which lie in the real subspace ~2 = 0 =~2- (Here, 
K is a constant parameter.) Thus, the chaotic 
motion resulting from the perturbation stays near 
the real subspace. 

This situation suggests modeling the chaotic 
dynamics by taking the real parts of all quantities, 
including the perturbation terms, in the per- 
turbed Maxwell-Bloch equations. The resulting 
approximate dynamics for the perturbed problem 
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are governed by the following equations: 

# = ,~ ,  (A.2a) 

~.~ = [ ~  + e cos(tot)] ~ ,  (A.2b) 

..~ = - [ ~  + 6 cos(to/)] ~ ,  (A.2c) 

the intersections of the surfaces .,¢'z-= 
{(~, ,~, K ) I L ( g ,  ~ ,  K)  = constant} with the hori- 
zontal planes K = constant. Orbits on a surface 

.Z/z- are shown in fig. 17. 
A homoclinic manifold exists for positive K, 

given by the equation 

where from now on all quantities are taken to be 
real.  

This system is Hamiltonian with a noncanoni- 
cal Lie-Poisson bracket 

1 2 _  L -  ~K - 0 ,  

or, explicitly in the (~ ,  ~ ,  K)  coordinates, 

(A.4) 

and time-dependent Hamiltonian ~ =  ½[g'+ 
e COS(tot)] 2 +.~'. (For a discussion of Lie-Poisson 
brackets, see appendix B.) System (A.2) possesses 

1 2 1 2 the constant of motion L = ~ + ~ . ~ ,  which is 
the same as the unitarity constant L in the text, 
and is the Casimir function for the Lie-Poisson 
bracket. For e = 0, the Hamiltonian ~ reduces 

I 2 to another conserved quantity K--  ~g' +.~,  the 
sum of the atomic and the field energies in the 
system. Linearity of this conserved quantity al- 
lows ~ to be eliminated in favor of K. 

The system (A.2) is the new ( g ' , ~ , K )  vari- 
ables, namely, 

~ =  [ ~ + , c o s ( t o t ) ] ( K _ t s g a 2 ) ,  

1~= - e ~  cos(tot),  

(A.3a) 

(A.3b) 

(A.3c) 

thus becomes a perturbed Dufling oscillator, with 
a slowly varying parameter, K. The constant of 
motion L for this oscillator system is given by 

1 L = ~ , ~ 2 +  I ( K _  1 ~ 2 )  2. 

The motion takes place on the surfaces of con- 
stant L. For ~ = 0, the system (A.3) reduces to a 
parametrized family of Dufling oscillators, 

In the (~', 9 ,  K )  space, its orbits are 

~ 2 _ K ~ 2 +  ¼~4=0.  

Motion takes place along the homoclinic orbits, 
described implicitly by eqs. (A.4) and K =  
constant, or parametrized by the solutions 

~" = + v/K sech(v~- t ) ,  

= • v/K s e c h ( ~  t)  t a n h ( ~  t) .  

These orbits lie on the intersections of three 
surfaces, a surface .Jf'~, a plane K = constant, 

1 2 and the homoclinic manifold L -  ~K --0. (See 
fig. 18.) 

For nonzero E, the three-dimensional per- 
turbed Maxwell-Bloch equations cannot be made 
autonomous by a phase rotation, in contrast to 
their five- and six-dimensional counterparts. 

L 

Fig. 17. Unperturbed periodic and homoclinic orbits lie on 
the energy surface .~L in R 3 for the restricted Maxwell-Bloch 
dynamics. 
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Therefore, a slightly different mechanism is re- 
sponsible for the existence of chaotic dynamics. 
This mechanism for chaos turns out to be the 
usual homoclinic tangle, appearing in the 
Poincar6 map t ~, t + 2av/to. 

In fact, restricting to a level surface of L by 
setting 

~ = 2v~-L--cos 4~, ~ = 2x/2x/2¢2L sin 4~, 

in eqs. (A.3) gives the periodically perturbed pen- 
dulum equations 

~ '= 2v~-Lcos~b, 4~= - [ g + e c o s ( t o t ) ] ,  

parametrized by the value of L. This perturbed 
pendulum system is essentially the same as the 
approximate model discussed in Alekseev and 
Berman [11]. The Poincar6-section analysis of this 
problem is very similar to the standard textbook 
example of the Smale horseshoe construction. 
(See, e.g., ref. [36].) This representation of the 
restricted perturbed Maxwell-Bloch problem as a 
parametrized family of perturbed pendula pro- 
vides the setting for the simplest analysis of 
chaotic dynamics available for this problem. 
However, to demonstrate in a bare-hands exam- 
ple the type of global phase-space geometry we 

'J K 
h°m° Iclinic °rbit / ~ ~P 

plane K = constant ~ /  ~ 

Fig. 18. A homoclinic orbit is the intersection of three 
surfaces in R3, a surface .,¢'/-, a plane K =  constant,  and the 
homoclinic manifold L - ½K 2 = 0. 

use in the text, and to visualize this type of 
geometry in a realistic way, we will return to the 
Duffing oscillator representation of this problem. 

Before returning to the Duffing oscillator rep- 
resentation, however, we will take advantage of 
the parametrized pendulum representation in or- 
der to show persistence of the hyperbolic struc- 
tures in this problem without resorting to the 
general abstract theory. Namely, the hyperbolic 
fixed point of the pendulum at ~b = ±'rr persists 
under the perturbation for ~ << 1 as a hyperbolic 
periodic orbit in the extended (ga,~b, t) phase 
space. Morever, the stable and unstable mani- 
folds of the fixed point survive as the stable and 
unstable manifolds of this periodic orbit. These 
results appear in the extended (g~, th, K, t) phase 
space of the Duffing oscillator in the following 
way. First, the line of hyperbolic fixed points 
parametrized by K survives under the perturba- 
tion as a cylinder of hyperbolic periodic orbits in 
the (g~, g ,  K, t) phase space. The stable and un- 
stable manifolds of the hyperbolic fixed points 
persist as the stable and unstable manifolds of 
these periodic orbits. 

We now construct a three-dimensional Poincar6 
slice by fixing t = 0, and taking periodicity of the 
problem into account. In this Poincar6 slice, the 
perturbed cylinder of hyperbolic periodic orbits 
appears as a curve of equilibria in (~ ' ,~ ,  K) 
space. The perturbed stable and unstable mani- 
folds of the equilibria on this curve each lie close 
to the unperturbed homoclinic orbits. The union 
of these manifolds are two smooth surfaces lying 
close to the unperturbed homoclinic manifold. 
(This situation is similar to the one shown in fig. 
7.) We will show shortly that these stable and 
unstable manifolds of the perturbed equilibria 
intersect transversely in the Poincar6 slice. Both 
the stable and the unstable manifolds of a given 
perturbed equilibrium and their intersections lie 
on one of the surfaces .~,L and produce the usual 
homoclinic tangle. By the Poincar6-Birkhoff- 
Smale homoclinic theorem [27, 36], this tangling 
results in a Smale horseshoe construction for a 
certain sufficiently large iterate of the Poincar6 
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map, and this implies the existence of chaotic 
dynamics. 

We calculate the distance between the stable 
and the unstable manifolds of an equilibrium 
lying on the curve of equilibria for the Poincar6 
map by calculating the Melnikov function along 
one of the normals to an unperturbed homoclinic 
orbit. We parametrize the perturbed stable and 
unstable manifolds of the fixed points in the 
Poincar6 section by the unperturbed homoclinic 
solution taken at time - t  0. Namely, 

g ' =  -t- v/K sech [v/-K ( - t0)] ,  

~ =  :t: v ~  s e c h [ x / K ( - t 0 ) ]  t anh[vrK-( - to ) ] ,  

K = constant, 

t - - 0 .  

The value of the perturbation at the point a is 
given by 

g = (0, [ K -  15,2( _ /0) ]  cos ( to t ) ,  

- ~ (  - t  0) s in( tot))  It =0, 

since the point a is taken in the t = 0 Poincar6 
slice. In the computation of the Melnikov func- 
tion we choose the normal component n 2. The 
Melnikov function is computed along the unper- 
turbed trajectory starting at the point a at time 
t = 0. Hence, 

M ( t o ; K ; t o )  

= f = _ J n 2 ( a ( t - t o ) ) , g ( a ( t - t o ) , t ) ) d t  

= "rrVr/~- sech ( 2--~--KK ) sin( to/0), 

As t o varies, this solution traces out the homo- 
clinic orbit lying on a level surface of L, .~¢,r. The 
two normal vectors to the homoclinic orbit at the 
given point a in (8",,~, K)  space are given by 
taking the gradients of the two relations K = 
constant and L -  ~ 2 ~K = 0. Namely, in ($', .~, K)  
coordinates, 

n,  = V K  = (0 ,  0 , 1 ) ,  

v ( r  - -- K -  

which has simple zeros at t o --n~r/to. Since these 
zeros are simple, the stable and unstable mani- 
folds of the perturbed fixed point for the Poincar6 
map intersect transversely on the level surface 

.~,L in the Poincar6 section at t = 0, as shown in 
fig. 19. (The proof of transversality is the same as 
in the text; see also fig. 10.) Having found trans- 
verse intersections of these manifolds in the 
Poincar6 slice, one may now invoke the 
Poincar6-Birkhoff-Smale theorem to conclude 
there exists an iterate of the Poincar6 map for 

These two normals span the plane normal to the 
unperturbed homoclinic orbit in the ($ ' , ,~ ,  K)  
space at the point a. The perturbed stable and 
unstable manifolds intersect this plane at the 

s and u as discussed in the text. The points a ,  a ,  
u _ s has two components in this plane. vector a,  a ,  

However, since both points lie on the same level 
surface of L,.J¢ "L, it is clear that we need to 
compute the vanishing of only one component of 
this vector, in order  to show intersection of the 
stable and unstable manifolds of the perturbed 
fixed point in the Poincar6 section at t = 0. (Com- 
pare with fig. 9.) 

9 1 4  L 

K 

Fig. 19. The stable and unstable manifolds of a perturbed 
fixed point of the Poincar6'map intersect transversely on a 
surface .K L in the Poincar~ section at t = 0. 
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which the dynamics are equivalent to a Bernoulli 
shift on two symbols. Physically, as discussed in 
the text, this type of homoclinic chaos corre- 
sponds to random "flickering" of the light inten- 
sity emitted by the perturbed system. 

Appendix B. Poisson brackets and symplectic 
forms for Maxwell-Schr6dinger and 
Maxwell-Bloch dynamics 

In the body of this paper, several canonical 
transformations and coordinate changes appear 
which utilize the underlying Hamiltonian struc- 
tures of the Maxwell-Schr6dinger and Maxwell- 
Bloch equations. In this appendix we collect the 
facts about Hamiltonian systems that are needed 
explicitly in the analysis presented in the text. For 
comprehensive treatments, see refs. [37-39]. 

An even-dimensional manifold fit" is said to be 
a symplectic manifold i f  it possesses a non-degen- 
erate, closed 2-form 12 given locally by 

12 = ½Kob(x ) dx  a A d x  b, 

with det K 4:0 everywhere, and a, b = 1 . . . . .  2n. 
Corresponding to each closed 1-form, expressible 
locally as ( O H / O x b ) d x  b on a symplectic manifold 

a¢', the 2-form g2 determines a local Hamiltonian 
system according to 

0H 
jc a = J a b ( x )  Ox b , 

where J = K-1 is called the Hamiltonian matrix. 
The Hamiltonian matrix jab = {x a, x b} is ~ the ma- 
trix of Poisson brackets among the coordinates 
for atv. Indeed, the operation defined by 

aF jab aH 
{ F , H }  = ~x ~ Ox b = ( V F ,  J V H ) ,  

between pairs of functions F and H on a sym- 
plectic manifold, is a bilinear, skew-symmetric 
map F × H ~ {F, H} which satisfies the Jacobi 

identity, 

{ F , { G , H } }  + { G , { H , F } }  + { H , { F , G } }  = 0 ,  

by virtue of the closure of 12, namely d12 = 0. 
Hence, the operation {F, H} defined in this way 
determines a Poisson bracket. 

Two most common examples are the following: 
(a) The canonical 2-form g-2 = d p  A dq o n  ~ 2  

is closed because it is exact, 12 = d ( p d q ) .  If we 
set x = (q, p), then it follows that 

't0 ,=(0 ,0.,=1 
and the associated Hamiltonian system is the 
canonical one, 

OH OH 
q = -b--p-- ' /5 0q" 

(b) The  complex symplectic form g2 = 
( 1 / 2 i ) d z / x  dz* on C follows from the canonical 
2-form by setting z = p + i q ,  z * = p - i q .  The 
complex canonical Poisson bracket is {z, z*} = 
- 2i. 

Both examples (a) and (b) appear in the treat- 
ment of the Maxwell-Schr6dinger equations in 
the text. 

Transformations leaving 12 invariant are called 
canonical. (In particular, the transformation gen- 
erated by the phase flow of any Hamiltonian 
system is canonical, see ref. [38].) The variable 
transformations f o r  the Maxwell-Schr6dinger 
equations in the text are shown in each case to be 
canonical, by explicitly giving the 2-form 12 re- 
sulting in the new coordinates. 

The text and appendix also introduce non- 
canonical Poisson brackets. For example, the pas- 
sage from the Maxwell-Schr6dinger equations to 
the complex Maxwell-Bloch equations introduces 
the following bilinear coordinate transformation 
to phase-invariant matter variables (Stokes vari- 
ables): 

= 2 ib+b* ,  -~ = Ib+ 12 --  Ib_ 12. 
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Direct computation using the complex symplectic 
Poisson brackets {b+, b*} = - 2 i  = {b_, b*} for 
b+ and b_ gives the Poisson brackets 

{ ~ 1 , g 2 } = 4 - ~ ,  {,~2,.-~'} =4,~1,  

{ "~' "~1} ~--- 4"~2' 

where .W ='~1 + i"~2" Choosing coordinates x = 
(Xl, X2, X3) ~--- (.~1/4, 9 2 / 4  , ~ / 4 )  with Poisson 
brackets {x  i, xj}  = e i j k X k  allows us to introduce a 
2-form 12 as 

ables 9 and .@ in direct sum with the complex 
symplectic bracket for the electric field envelope. 

The real restriction of  the per turbed  
Maxwell-Bloch equations in appendix A, system 
(A.2), may also be written in the cross-product 
form, by setting x = (8", ~ ,  .@), M = ~(x 2 
L, and H = ½[xl + e cos(oJt)] 2 +x3. 

Appendix C. Variational principles for 
Maxwell-Schr6dinger equation sets 

1 2 =  l ( x l d x 2  A dx3  W x 2 d x 3  A d x  i 

+x 3 dx l A dx2) = l -g~ijkXk d x  i A d x j .  

This 2-form is neither closed (since dO = dx~ A 
dx 2/x dx3) nor nondegenerate (since, for M =  
~(xl~ 2 +x22 +x32), the vector VM annihilates the 
2-form O under substitution). Moreover, the 
manifold .d '=  R3 with coordinates (x~, x 2, x 3) is 
not even-dimensional. However, the Poisson 
bracket associated with this 2-form defined as 

{ F , H }  dO = d M A  d F A  d H  

= VM. VF × VG dO 

does satisfy the Jacobi identity for any smooth 
function M. When restricted to a level surface of 
M, this Poisson bracket becomes symplectic with 
12 given by the area element on that surface. The 
equations of motion on ~3 associated with this 
bracket are in cross-product form 

./" = VM × VH, 

so the motion in R3 takes place along intersec- 
tions of level surfaces of M and H. When M is 
quadratic as in the present case, this Poisson 
bracket is an example of a Lie-Poisson bracket. 
(See, e.g., ref. [38], appendix 14, and references 
therein for general discussions of Lie-Poisson 
brackets.) The complete Poisson bracket for the 
complex Maxwell-Bloch ,dynamics consists of the 
Lie-Poisson bracket in R3 for the matter vari- 

This appendix presents the variational princi- 
ples for the primitive Maxwell-Schr6dinger equa- 
tions and our approximate envelope Maxwell- 
Schr6dinger equations. In particular, starting with 
the variational principle for the primitive 
MaxweU-Schr6dinger equations, we introduce 
envelope coordinates and an external perturbing 
field (the probe laser) to derive the perturbed 
Maxwell-Schr6dinger envelope equations (2.1) 
treated in the text. This derivation complements 
the derivation presented in section 2, based solely 
on the equations of motion, and explains the 
Hamiltonian nature of the approximate equations 
and their constants of motion. The primitive 
Maxwell-Schr6dinger equations are 

Ezz  - El ,  = 2KP,  t ,  (C. la)  

1 i,i+= ~ - ~ a + - E a _ ,  (CAb) 

1 
id _ = - -~-~r a _ -  E a  +, (C.lc)  

where P = ( a + a * _  + a ' a _ )  is the dimensionless 
polarizability and the ratio of frequencies, x = 
toc/0J 0 << 1, is a small parameter. The wave equa- 
tion for the linearly polarized electric field E 
follows from Maxwell's equations 

15 = Bz, (C.2a) 

= Ez, (C.2b) 

where D = E + 2KP is the electric displacement 
and B is the magnetic field. 
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Introducing the magnetic vector potential A 
that satisfies the relations ,4 = E  and Az = B  
allows us to write the primitive Maxwell-Schr6- 
dinger equations as stationarity conditions for 
Hamilton's principle, 8S = 0, with action S given 
by 

~A~ + 2K`4(a +a* + a'a_)  

- 0 a  + I: - l a _  I:) 

* /] +iK(a*d+-a+a+ +a*d_-a_d*  dzdt .  

The third term in the integrand of S is the 
interaction term, which couples the electromag- 
netic field to the matter fields. Stationary varia- 

* and a* tions with respect to A, a+ now give 

8A: A'+ 2KP-Azz  = 0, 

1 
8a*: i t i+-  ~--~a++Ea_=O, 

1 
8a*_: i d_+) - -~a_+Ea+=0 .  

In terms of the fields D and B, the first part of 
this Poisson bracket may also be written as 

f [ ~G { ~H 

Hence, 

A = {A H} = ~H , g-~- =E, 
8H 

15 = { o , n }  = ~zg~ =Bz, 

and we recover Maxwell's equations, (C.2). Like- 
wise, we have 

i 8H 1 
ti+= {a+,H} = 2K 8a~ = 2-KK a+-Ea- '  

i 8H 1 
ti ={a_ ,H} = 2K 8a~  = --2--KK a- -Ea+'  

for the atomic level amplitudes. 
We now return to the action principle and 

write the atomic amplitudes in the "rotating 
wave" form, 

Passing to the Hamiltonian description via the 
usual Legendre transformation gives the con- 
served Hamiltonian 

H=f(½E2+½BZ+la+lZ-la_12)dz ,  

which is just the sum of the field energy and 
atomic excitation energy. This leads to a Hamilto- 
nian formulation of the primitive Maxwell- 
Schr6dinger equations using the canonical Pois- 
son bracket for the fields, 

{G'rI} = f [ (  8G~HSA 8D ~D~G 8ASH) 

i ( ~ G  ~H ~G 8 H )  
2K ~ 7_ ~a--a-5+ - ~-a~-+ ~-g7+ 

i ( ~ G  ~ H - ~ G  ~ H ) ]  
2K ~--a-7_~a-a~_ ~-g75_ a-a7_ dz.  

a += b+e-i(t-z)/2x, a_= b_e iO-z)/2g. 

Also, we take the self-consistent part of the vec- 
tor potential to be a modulated right-going wave, 
in the envelope form, 

A = ixs¢ e - i ( t - z ) / e :  -- iK~'* e i(t-z)/~, 

with complex envelope function ~'. In these ex- 
pressions, the complex envelope functions b +, b_ 
and ~'  are assumed to depend only on time, t. 
Hence, 

1 "2 1 : iK(aea~*-ac*A), sA - ~A z = - 

and 

i(a* fi+-a+d* ) = i(b*b +-b+b* ) - llb+12, 

_ _ i b * b  - b  b*  1 1 b _ 1 2 .  i(a*d - a _ t i * ) =  ( . . . .  ) +  
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In the interaction term of the action we also add 
to the vector potential the perturbation piece 

iK' E e-i(t--z)/K' ~ il(t E e i ( z - z ) /K  ', 

where 1/K - 1 / r ' - - to ,  in order to represent the 
externally imposed probe laser field. Averaging 
over the fast phases, performing the z-integra- 
tion, dividing by 4K, and dropping terms of higher 
order in K yields the new action 

f 
itot * +i(b*b_-b_[~*)+(sC+~e )b+b_ 

+ (,~¢* +Ee-i'°t)b+b *] dt. 

Varying the action ,5 a yields 

8~= f {r~,* (is# + b +b* ) 

+ 8~¢ ( -  i.~ * +b'b_) 
+~b* lib+ + ( ~  + E ei'~t)b_] 

-itut * +~b+ [ - i b *  + (.at* + ~e )b_] 

+Sb* l ib_+ (.at* + ee-i '° t )b+] 

+ S b _  [ - i b * _  + (..~¢ +,e i~° t )b*__]}d t .  

Thus, stationarity of the averaged action S ~' im- 
plies the Maxwell-Schr6dinger envelope equa- 
tions (2.1), provided we identify ~¢ =~', which 
follows to first order in x from the relation .4 = E 
and the envelope form of the solution for the 
vector potential. 

Via a Legendre transformation, the action ~ '  
implies precisely the Hamiltonian formulation for 
eqs. (2.1) given in the text, with time-dependent 
Hamiltonian function given by the electromag- 
netic interaction energy, 

, ,~ = _ 1 (  ~ + ~: ei~Ot)b.+b_ 

- l ( ~ *  + E e - i ~ t ) b + b * _ _ .  
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